Organic photovoltaics: towards a sustainable future

Mario Prosa
Institute of Nanostructured Materials (ISMN), Research National Council (CNR), Bologna, Italy
mario.prosa@bo.ismn.cnr.it
Why organic photovoltaics?

✓ Properties tunability
✓ High absorption coefficients
✓ Deposition from solution at low temperature
✓ Large area coverage (R2R process)
✓ Flexible and light-weight devices
✓ Low cost
Bulk heterojunction (BHJ) polymer solar cells

Spin coating Blade coating Roll-to-roll

Electron donor polymer
Electron acceptor (PCBM)

Top metal electrode
ETL
BHJ active layer
HTL
Indium Tin Oxide (ITO)
Glass

30 ÷ 100 nm

1. 2. 3. 4.
Anode Cathode

Operation mechanism
Environmentally friendly processing and stability of organic solar cells
Environmentally friendly processing and stability

Halogenated solvents

- Chloroform (CF)
- 1,2-Dichlorobenzene (ODCB)
- Chlorobenzene (CB)
- 1,2,4-Trichlorobenzene (TCB)

Halogen-free solvents

- Toluene
- 1,2,4-Trimethylbenzene
- O-Xylene

1,2-Dichlorobenzene (ODCB)

- o-Xylene

The morphology of the active layer typically plays a crucial role on the device stability.

Environmental friendly processing and stability

<table>
<thead>
<tr>
<th>Active layer ratio [wt/wt]</th>
<th>Processing Solvent</th>
<th>Co-Solvent [v/v]</th>
<th>PCE [%]</th>
<th>V_{OC} [V]</th>
<th>J_{SC} [mA/cm2]</th>
<th>FF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1):PC$_{61}$BM (1:2)</td>
<td>ODCB</td>
<td>--</td>
<td>6.1</td>
<td>0.79</td>
<td>10.9</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>o-xylene</td>
<td>--</td>
<td>2.2</td>
<td>0.79</td>
<td>5.5</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>o-xylene</td>
<td>2.5%</td>
<td>6.2</td>
<td>0.78</td>
<td>11.7</td>
<td>68</td>
</tr>
</tbody>
</table>

$PCE = Power Conversion Efficiency$

ISOS-D-2 standard testing protocol

- 150 hours
- 85°C
- Inert atm.
- Dark

AFM images (aged active layers)

ODCB

After test

ΔPCE [%]

ODCB - Aged

O-Xyl - Aged

Relevant phase segregation.
Poor correlation with ΔPCE

<table>
<thead>
<tr>
<th>Processing solvent</th>
<th>Device condition</th>
<th>PCE [%]</th>
<th>ΔPCE [%]</th>
<th>V_{oc} [V]</th>
<th>J_{sc} [mA/cm²]</th>
<th>FF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODCB</td>
<td>Fresh</td>
<td>6.1</td>
<td>-49%</td>
<td>0.79</td>
<td>10.9</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>After test</td>
<td>3.1</td>
<td></td>
<td>0.64</td>
<td>9.6</td>
<td>51</td>
</tr>
<tr>
<td>o-Xylene*</td>
<td>Fresh</td>
<td>6.2</td>
<td>-19%</td>
<td>0.78</td>
<td>11.7</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>After test</td>
<td>5.0</td>
<td></td>
<td>0.73</td>
<td>10.9</td>
<td>62</td>
</tr>
</tbody>
</table>

*with 2.5% of co-solvent

Environmentally friendly processing and stability

LSCM: Laser Scanning Confocal Microscopy
- Bulk morphology in the device
- Singlet emission from donor polymer

*with 2.5% of co-solvent

AFM images (aged active layers)

LSCM images (aged active layers)

Measurement: Outside the active area
LSCM: Laser Scanning Confocal Microscopy

- Bulk morphology in the device
- Singlet emission from donor polymer

Confinement effect of the top electrode

with 2.5% of co-solvent
Chlorinated solvents can be **successfully replaced** by environmentally friendlier ones without affecting the photovoltaic performance.

The processing solvent of the active layer is of **relevant** importance for the **thermal stability** of photovoltaic device.

Light-based imaging techniques (**LSCM**) offer the advantage to **analyze the degradation** of the photoactive film in a complete device.

Methods to improve the photovoltaic efficiency
Methods to improve the photovoltaic efficiency

Single-junction architecture

Double-junction (tandem) architecture

Methods to improve the photovoltaic efficiency

Interconnecting layer (ICL):

- **Electrical**
 - Ohmic contact with the sub-cells
 - Balanced recombination of opposite charges
 - Low electrical resistance

- **Optical**
 - Transparent
 - Optical spacer effect

- **Chemical/physical**
 - Chemically inert
 - Physically robust
 - Compatible with mass production

- **Others**
 - Good lifetime
 - Light stable
 - Thermal stable
Methods to improve the photovoltaic efficiency

Interconnection layer (ICL)

- PEDOT:PSS
- ZnO NPs
- PEDOT:PSS

...towards roll-to-roll

Spin coating ➔ Blade coating ➔ Roll-to-roll

Layer thickness ≈ 100 nm

Difficult deposition over the hydrophobic organic active layer

PEDOT:PSS
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

Water-based dispersion

 Mario Prosa - DSCTM Conference 2017
Device Performance

<table>
<thead>
<tr>
<th>Device</th>
<th>J_{sc} [mA/cm²]</th>
<th>V_{oc} [V]</th>
<th>FF [%]</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Top) PMDPP3T:PC$_{71}$BM</td>
<td>14.9</td>
<td>0.58</td>
<td>62</td>
<td>5.3</td>
</tr>
<tr>
<td>(Bottom) HBG1:PC$_{61}$BM</td>
<td>10.4</td>
<td>0.77</td>
<td>62</td>
<td>4.9</td>
</tr>
<tr>
<td>Tandem A</td>
<td>8.2</td>
<td>1.25</td>
<td>45</td>
<td>4.5</td>
</tr>
</tbody>
</table>

The surfactant-modified PEDOT:PSS limits the tandem performance.

Methods to improve the photovoltaic efficiency

Effect of the surfactant

Isopropanol surface washing to remove the PSS capping layer
Methods to improve the photovoltaic efficiency

Surface alcoholic treatment
- Partial dissolution of PSS insulating phase
- Reorganization of the PEDOT and PSS chains

Improved m-PEDOT:PSS/ZnO contact

Table: Photovoltaic Parameters

<table>
<thead>
<tr>
<th>Cell</th>
<th>Intermediate contact</th>
<th>PCE [%]</th>
<th>J_{sc} [mA/cm2]</th>
<th>V_{oc} [V]</th>
<th>FF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bottom) HBG1:PC$_{61}$BM</td>
<td>-</td>
<td>4.9</td>
<td>10.4</td>
<td>0.77</td>
<td>62</td>
</tr>
<tr>
<td>(Top) PMDPP3T:PC$_{72}$BM</td>
<td>-</td>
<td>5.3</td>
<td>14.9</td>
<td>0.58</td>
<td>62</td>
</tr>
<tr>
<td>Tandem A</td>
<td>Pristine</td>
<td>4.5</td>
<td>8.2</td>
<td>1.25</td>
<td>45</td>
</tr>
<tr>
<td>Tandem B</td>
<td>Isopropanol treated</td>
<td>7.6</td>
<td>9.5</td>
<td>1.34</td>
<td>60</td>
</tr>
</tbody>
</table>

The introduction of surfactant in PEDOT:PSS (m-PEDOT:PSS) allows a versatile deposition over any hydrophobic active film;

The presence of surfactant in the PEDOT:PSS interlayer of the ICL affects the performance of the resulting tandem device;

IPA treatment over m-PEDOT:PSS is a fast approach, fulfilling the industrial coating requirements, to recover the properties of the intermediate layer of organic tandem solar cells.

Acknowledgements

Dr. Michele Muccini
Dr. Giampiero Ruani
Dr. Stefano Toffanin
Dr. Margherita Bolognesi

Dr. Mirko Seri

Prof. M. Venturi
Prof. B. Fraboni
Dr. Marta Tessarolo

Contact: mario.prosa@bo.ismn.cnr.it

web site: http://www.sunflower-fp7.eu/
Thank you for your attention