From PTA to novel CAP: application of water soluble phosphines in catalysis and medicinal chemistry

Antonella Guerriero

Consiglio Nazionale delle Ricerche (CNR)
Istituto di Chimica dei Composti Organometallici (ICCOM)
Sesto Fiorentino (Florence), Italy
Water: green solvent for homogeneous and biphasic catalytic processes

- environmentally benign (not volatile and not toxic)
- replacement of organic solvents and their disposal
- reduction of risks (not flammable)
- separation of organic products from catalysts (recovery and recycling)
- low cost, abundant

WATER SOLUBLE P-LIGANDS

PTA: the long story of a versatile water soluble phosphine

1. “Soft metal” coordination: catalysis and biological activities

2. Upper rim functionalisation with C-alkylation: bidentate ligands and introduction of a stereocentre

3. Lower rim functionalisation with N-alkylation: catalysis (hydroformylation)

4. “Hard metal” coordination: grafting, heterogenisation, polymerization

5. Cage opening: P,N chelates for catalysis

PTA: 1,3,5-triaza-7-phosphadamantane
- Neutral phosphine synthesized in 80-90% yield
- Thermally stable (dec. Temp. >260°C)
- Solid stable to air and moisture
- Soluble in water (S = ca. 235 g/L)
- Small cone angle (103°)

PTA upper rim functionalisation

GENERAL SYNTHETIC ROUTE

Synthesis of Ir(I) and Ru(II) Complexes

<table>
<thead>
<tr>
<th>Solubility in water @ 20 °C (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZA= 1050</td>
</tr>
<tr>
<td>PZA-NMe₂= 1.8</td>
</tr>
<tr>
<td>PTA-CH(1Melm)OH= 320</td>
</tr>
<tr>
<td>PTA-C(1Melm)₂OH= 78</td>
</tr>
</tbody>
</table>

Ir(I) and Ru(II) Complexes for *Transfer Hydrogenation* Reactions

CATALYSTS

- Ir(I) and Ru(II) Complexes for *Transfer Hydrogenation* Reactions

SUBSTRATES

- CNA: R = H
- BZA: R = CH₃

TH PROTOCOLS

- **CNA** → conv. 96.6% (6h) @40 °C [cat/sub 1:100]
 - C=O selectivity

- **BZA** → conv. 55.1% (24h) @60 °C [cat/sub 1:100]
 - C=C selectivity

- **KOH/iPrOH**
 - conv. 83.3% (5h) @80 °C [cat/sub 1:500]
 - C=O and C=C hydrogenation

- **¹BuOK/iPrOH**
 - conv. 84.1% (4h) @25 °C [cat/sub 1:250]
 - conv. 97.9% (4h) @40 °C [cat/sub 1:500]
 - conv. 89.7% (4h) @40 °C [cat/sub 1:1000]

Young Investigator Award 2018
Lower rim functionalisation

GENERAL SYNTHETIC ROUTE

- Easily synthesised
- Design of steric and electronic properties
- Tunable water solubility

Long-chain alkene biphasic HF with cyclodextrins (CDs) as mass transfer promoters

- Formation of ADDUCTS (CD/Substrate and CD/catalyst)
 - van der Waals interactions
 - hydrophobic interactions
 - electrostatic forces
 - steric effects

- Native β-CD: $R = H$
- RAME-β-CD: $R = H \circ CH_3$
 (substitution degree = 1.7 per glucopyranose unit)
- RAME = randomly methylated

Native β-CD

RAME-β-CD

LEGEND

- [LEGEND IMAGE]

Rh-catalysed hydroformylation of long chain olefins in biphasic media

- Basicity > [N-Bz-PTA]Cl ($J_{\beta,se} = 815$ Hz)
- $S([H_2O])_{298} ^c = 10$ g/L
- Interaction between tert-butyl group and RAME-β-CD

Experimental conditions:
- $T = (20.35$ mmol), 1500 rpm, CO/H_2 in (1/1): 50 bar, 6 h.

CD-based thermocontrolled catalytic process

<table>
<thead>
<tr>
<th>Olefin</th>
<th>CD</th>
<th>T (°C)</th>
<th>Conv. (%)b</th>
<th>Sel. (%)c</th>
<th>l/bd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-decene</td>
<td>–</td>
<td>80</td>
<td>26</td>
<td>99</td>
<td>2.1</td>
</tr>
<tr>
<td>1-decene</td>
<td>RAME-β-CD</td>
<td>80</td>
<td>10</td>
<td>97</td>
<td>1.8</td>
</tr>
<tr>
<td>1-decene</td>
<td>–</td>
<td>100</td>
<td>56</td>
<td>99</td>
<td>1.7</td>
</tr>
<tr>
<td>1-decene</td>
<td>RAME-β-CD</td>
<td>100</td>
<td>72</td>
<td>99</td>
<td>2.0</td>
</tr>
<tr>
<td>1-dodecene</td>
<td>RAME-β-CD</td>
<td>120</td>
<td>98</td>
<td>99</td>
<td>1.8</td>
</tr>
<tr>
<td>1-dodecene</td>
<td>RAME-β-CD</td>
<td>80</td>
<td>11</td>
<td>99</td>
<td>1.7</td>
</tr>
<tr>
<td>1-dodecene</td>
<td>RAME-β-CD</td>
<td>100</td>
<td>75</td>
<td>99</td>
<td>1.7</td>
</tr>
<tr>
<td>1-tetradecene</td>
<td>RAME-β-CD</td>
<td>80</td>
<td>14</td>
<td>95</td>
<td>1.6</td>
</tr>
<tr>
<td>1-tetradecene</td>
<td>RAME-β-CD</td>
<td>100</td>
<td>88</td>
<td>97</td>
<td>1.9</td>
</tr>
</tbody>
</table>

*Experimental conditions: Rh(acac)(CO_2) (4.07 × 10$^{-2}$ mmol), water-soluble ligand (0.21 mmol), CD (0.48 mmol), H_2O (11.5 mL), 1-alkene (20.35 mmol), 1500 rpm, CO$/H_2$ (1/1): 50 bar, 6 h. a Calculated with respect to the starting olefin. b(mol of aldehydes)/(mol of converted olefins) × 100. The side products were mainly isomeric olefins. cRatio of linear to branched aldehyde products.

Immobilization of Ir-PTA complex on DOWEX resins

ION –EXCHANGE RESINS AS CATALYST CARRIERS:
- Water tolerant
- Swell in water giving a porous structure
- Commercially available and low cost
- Resistance to thermal, mechanical and chemical stress
- Easy separation

DOWEX resin sulfonated gel-type

Tethered catalysts	Ir loading (w/w)	Ir immobilised (%)
H+ - D50WX2 | 1.73 (1) | 64.3%
Li+ - D50WX2 | 1.68 (1) | 62.4%

* Experimental conditions: resin 700 mg (3.36 meq, ion exchange capacity), metal complex 0.102 mmol, H2O:MeOH=3:1, 24h, r.t. * ICP-OES value

Larger downfield shift due:
- Ionic interactions
- Acid-base interactions

MORE ROBUST CATALYST

RESULTS

- 100% selectivity to desired products in all cases
- Heterogenized catalyst more active than the homogeneous ones
- No catalytic activity shown by the solution recovered after catalysis (minor metal leaching)
- Easy and quantitative recovery of the resin by decantation

Pharmaceutically relevant molecules: antidepressants, antitumoral, antibiotics etc.

Substrate	**Product**	**Phase**	**Yield (%) [time h]**	**TOF (h⁻¹)**	**Leaching (ppm)\(^i\)**
2-methylquinoxaline	2-methyl-1,2,3,4-tetrahydroquinoline	Hetero\(^b\)	92.2 [22]	6	0.2
	Homo\(^b\)	91.1 [16]	9		
5-methylquinoxaline	5-methyl-1,2,3,4-tetrahydroquinoline	Hetero\(^c\)	89.2 [22]	6	0.32
	Homo\(^c\)	32.0 [17]	3		
2,6-dimethylquinoline	2,6-dimethyl-1,2,3,4-tetrahydroquinoline	Hetero\(^d\)	26.0 [29]	1	0.08
	Homo\(^d\)	3.5 [29]	1		
3,4-dihydroisoquinoline	1,2,3,4-tetrahydroisoquinoline	Hetero\(^e\)	99.9 [1]	300	7.6
	Homo\(^e\)	11.0 [1]	34		
	Hetero\(^g\)	89.7 [2]	374	4.0	
Harmaline	Leptaflorine	Hetero\(^f\)	99.1 [24]	4	8.5
	Homo\(^f\)	9.3 [22]	5		
4,4'-dimethylfuran-2,3-dione	Pantolactone	Hetero\(^g\)	89.0 [4]	22	0.37
	Homo\(^g\)	99.9 [4]	25		

\(^a\) Experimental batch conditions: \(P = 20\) bar \(H_2\), \(T = 80^\circ\)C; \(^b\) \(H_2O, S/C = 150\); \(^c\) \(H_2O, S/C = 150\); \(^d\) \(50\) bar \(H_2\); \(^e\) \(H_2O: MeOH = 4:1, S/C = 50\); \(^g\) \(H_2O, S/C = 305\); \(^i\) \(H_2O: MeOH = 1.5:1, S/C = 100\); \(^j\) \(H_2O, S/C = 830\); \(^k\) \(H_2O, S/C = 100\); \(^l\) determined by ICP-OES.
New ligand CAP: the higher homologue of PTA

Nine-membered macrocycle

CAP: 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane

• Stable to air and moisture as solid and in solution
• Soluble in water (S = ca. 2 g/100 mL)
• Thermal stability comparable with that of PTA
• Small cone angle (109°)
• Soluble in MeOH, EtOH, 'PrOH, CH$_3$CN
• Highly soluble in CHCl$_3$, CH$_2$Cl$_2$ (S = ca. 10 g/100 mL)

THP = tris-(hydroxymethyl)phosphine
TACN = 1,4,7-triazacyclononane

MeOH best solvent choice
No reaction in THF or acetone
Formation of amorphous byproducts

Figure 1. Dodecahedral crystals of free ligand CAP (adapted from original ref.)
CAP cage architecture: a stereochemically intermediate between PTA and Verkade’s ligand

PTA

CAP

P=O Verkade’s aminophosphine

Same environment at P (bridging P-C-N)

TACN macrocycle embedded in the cage

 Samaritan: SAME CONFORMATION OF TACN
 Samaritan: HIGH CONFORMATIONAL FLEXIBILITY

Young Investigator Award 2018
Different reactivity between CAP and PTA

Young Investigator Award 2018
Improvement of CAP synthesis

\[
\text{THPC= tetrakis-(hydroxymethyl)phosphonium chloride}
\]
\[
\text{THP = tris-(hydroxymethyl)phosphine}
\]
\[
\text{TACN = 1,4,7-triazacyclononane}
\]

- air-stable
- commercially available

- air-sensitive
- not isolated

- easy workup
- high purity

ca. 25% yield after recrystallization in hot EtOH

THPC = \text{tetrakis-(hydroxymethyl)phosphonium chloride}
THP = \text{tris-(hydroxymethyl)phosphine}
TACN = \text{1,4,7-triazacyclononane}

Synthesis of Ru(II) CAP complexes

Comparison of 31P(1H) NMR chemical shifts and water solubility values.

<table>
<thead>
<tr>
<th></th>
<th>31P(1H) NMR (ppm)</th>
<th>$S(H_2O)_{20^\circ C}$ (g L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>47.80 (s), CDCl$_3$</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>46.72 (s), D$_2$O</td>
<td></td>
</tr>
<tr>
<td>PTA</td>
<td>-102.34 (s), CDCl$_3$</td>
<td>230.0</td>
</tr>
<tr>
<td></td>
<td>-98.61 (s), D$_2$O</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>52.83 (s), CDCl$_3$</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>57.48 (s), D$_2$O</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>51.60 (s) -144.26 (sept, $J_{PF} = 707.5$ Hz), acetone-d_6</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>56.80 (s) -145.10 (sept, $J_{PF} = 707.5$ Hz), D$_2$O</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>48.17 (s) -144.27 (sept, $J_{PF} = 707.8$ Hz), acetone-d_6</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>56.80 (s) -145.10 (sept, $J_{PF} = 707.5$ Hz), D$_2$O</td>
<td></td>
</tr>
<tr>
<td>RAPTA-C</td>
<td>-36.63 (s) in CDCl$_3$</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Solid-state characterisation of Ru(II) compounds

RACAP-C. Selected bond distances (Å) and angles (deg): Ru-Cl1=2.4184(5), Ru-Cl2=2.4205(5); Ru-P=2.3180(5); Ru-centroid(C1-C6)=1.709; Cl1-Ru-Cl2=87.601(19); Cl1-Ru-P=86.937 (19); Cl2-Ru-P=83.775(18)

CRYSRALS GROWN FROM EtOH/CH₂Cl₂

- CAP with same [333] conformation of free ligand
- Same PN and NN distances as in free ligand
- Ru-P bond length longer than RAPTA-C
- Ru-C bond lengths longer than RAPTA-C

- Same CAP conformation of 2
- Ru-P and Ru-C bond lengths longer than in 2
 (less strong Ru-p-cymene interaction)
- Ru-Cl bond lengths shorter than in 2

Compound 3 2MeOH/H₂O. Selected bond distances (Å) and angles (deg): Ru-Cl=2.4026(7); Ru-P1=2.3254(7); Ru-P2=2.3353(7); Ru-centroid(C1-C6)=1.768; Cl-Ru-P1=83.59(2); Cl-Ru-P2=87.90(3); P1-Ru-P2=93.37(3)

Stability tests of new Ru(II) complexes

Pseudo-pharmacological conditions:

- NaCl/D$_2$O (100 mM)
- Complexes (4 mM) in NaCl/D$_2$O
- T= 37 °C

Details of 31P{1H} NMR spectra of complexes in NaCl/D$_2$O @ 37 °C
Ru(II)-CAP complexes: in vitro antitumor tests

<table>
<thead>
<tr>
<th></th>
<th>A2780</th>
<th>A2780cisR</th>
<th>HEK293</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
</tr>
<tr>
<td>2</td>
<td>55.3 ± 18.6</td>
<td>108 ± 10</td>
<td>102 ± 26</td>
</tr>
<tr>
<td>3</td>
<td>48.1 ± 2.2</td>
<td>99.2 ± 15.9</td>
<td>80.7 ± 12.4</td>
</tr>
<tr>
<td>4</td>
<td>65.2 ± 18.0</td>
<td>70.6 ± 3.1</td>
<td>163 ± 46</td>
</tr>
<tr>
<td>RAPTA-C</td>
<td>230</td>
<td>270</td>
<td>>1000</td>
</tr>
</tbody>
</table>

Cytotoxicity tests (IC$_{50}$, μM, 72 h) of CAP and its complexes.

- Only minor cytotoxicity effects of CAP
- Similar IC$_{50}$ values of 2-4 due to the same species in solution
- Equal cytotoxicity of 4 toward A2780 and A2780cisR
- High cell selectivity of 2-4 against A2780 compared to HEK293
- Higher cytotoxicity of 2-4 compared to RAPTA-C

A2780 = human ovarian carcinoma cells
A2780cisR = cells resistant to cisplatin
HEK293 = noncancerous human embryonic kidney cells
Ru(II)-CAP complexes: catalytic transfer hydrogenation of BZA

- **Active @ 80°C**
- **Highly stable**
- **More active than RAPTA-C**
- **Selective for C=C bond reduction**

Catalytic transfer hydrogenation of BZA with compounds 2 – 4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>T (°C)</th>
<th>% conv.</th>
<th>time (h)</th>
<th>yield A (%)<sup>b</sup></th>
<th>yield B (%)<sup>b</sup></th>
<th>yield C (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>60</td>
<td>60.0</td>
<td>24</td>
<td>45.3</td>
<td>13.0</td>
<td>1.7</td>
</tr>
<tr>
<td>2<sup>c</sup></td>
<td>2</td>
<td>60</td>
<td>18.7</td>
<td>24</td>
<td>14.2</td>
<td>4.4</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>80</td>
<td>99.4</td>
<td>4</td>
<td>82.0</td>
<td>5.2</td>
<td>12.2</td>
</tr>
<tr>
<td>4<sup>c</sup></td>
<td>2</td>
<td>80</td>
<td>76.3</td>
<td>4</td>
<td>61.7</td>
<td>12.8</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>80</td>
<td>82.6</td>
<td>4</td>
<td>68.9</td>
<td>11.5</td>
<td>2.2</td>
</tr>
<tr>
<td>6<sup>c</sup></td>
<td>4</td>
<td>80</td>
<td>51.9</td>
<td>4</td>
<td>40.4</td>
<td>10.8</td>
<td>0.7</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>80</td>
<td>71.8</td>
<td>24</td>
<td>52.3</td>
<td>15.8</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96.0</td>
<td>68.7</td>
<td>13.5</td>
</tr>
<tr>
<td>8<sup>c</sup></td>
<td>3</td>
<td>80</td>
<td>66.5</td>
<td>24</td>
<td>46.6</td>
<td>17.8</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.5</td>
<td>73.5</td>
<td>13.0</td>
</tr>
<tr>
<td>9</td>
<td>RAPTA-C</td>
<td>80</td>
<td>99.5</td>
<td>24</td>
<td>93.2</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>10<sup>c</sup></td>
<td>RAPTA-C</td>
<td>80</td>
<td>30.0</td>
<td>24</td>
<td>23.8</td>
<td>6.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

^aGeneral conditions: catalyst, 9.8 x 10⁻³ mmol; BZA, 0.98 mmol; HCOONa, 9.8 mmol; MeOH:H₂O (1:1), 6 mL; catalyst/substrate/HCOONa = 1:100:1000. ^b GC values based on pure samples: A = 4-phenyl-2-butanone; B = 4-phenyl-3-buten-2-ol; C = 4-phenyl-2-butanol. ^cHg(0) added (one drop).
Catalytic transfer hydrogenation of cyclic imines with complex 3.

<table>
<thead>
<tr>
<th>Entry</th>
<th>T (°C)</th>
<th>solvent</th>
<th>Substrate</th>
<th>Productb</th>
<th>yieldc</th>
<th>time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>H₂O</td>
<td>3,4-dihydroisoquinoline</td>
<td>1,2,3,4-tetrahydroisoquinoline</td>
<td>39.9</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>MeOH/H₂O 1:1</td>
<td>2-methylquinoxaline</td>
<td>2-methyl-1,2,3,4-tetrahydroquinoxaline</td>
<td>10.9</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>MeOH/H₂O 1:1</td>
<td>5-methylquinoxaline</td>
<td>5-methyl-1,2,3,4-tetrahydroquinoxaline</td>
<td>74.1</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.5</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>MeOH/H₂O 1:1</td>
<td>quinoline</td>
<td>1,2,3,4-tetrahydroquinoline</td>
<td>0.4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>MeOH/H₂O 1:1</td>
<td>2-methylquinoxaline</td>
<td>2-methyl-1,2,3,4-tetrahydroquinoxaline</td>
<td>–</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>MeOH/H₂O 1:1</td>
<td>5-methylquinoxaline</td>
<td>5-methyl-1,2,3,4-tetrahydroquinoxaline</td>
<td>1.5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>48</td>
</tr>
</tbody>
</table>

^aGeneral conditions: catalyst, 1.0 x 10^{-2} mmol; substrate, 1.0 mmol; HCOONa, 10.0 mmol; MeOH:H₂O (1:1), 6 mL; catalyst/substrate/HCOONa= 1:100:1000. ^bProducts confirmed by GC and GC-MS analyses. ^cGC values based on pure samples.

- active @80°C
- good conversion
- mild reduction protocol

Investigation of catalytically active species

I. NMR scale experiment under pseudo-catalytic conditions:

\[\text{3} + \text{HCOONa} (50 \text{ eq}) \xrightarrow{\text{MeOH/H}_2\text{O (1:1)}} \text{4} \]

- T = 60 °C \rightarrow 100\% conv. after 24 h
- T = 80 °C \rightarrow 100\% conv. after 17 h

II. Independent synthesis:

\[\text{3} + \text{HCOONa} (50 \text{ eq}) \xrightarrow{\text{MeOH/H}_2\text{O (1:1)}} \text{4} \]

100\% conv. after 28 h

Figure 4. \(^1\text{H}\) (left) and \(^1\text{H}^{(31}\text{P})\) NMR (right) spectra (negative region only, \(\text{CD}_2\text{Cl}_2\)) showing the change from triplet to singlet for the Ru-H signal in 4.

Summary of results

- Synthesis of a library of PTA upper-rim and lower-rim modified ligands
- Homogeneous Ru and Ir catalyzed C=O and C=C bond hydrogenations
- Biphasic Rh-catalyzed olefin hydroformylation with CDs
- Heterogeneous Ir-catalyzed C=N and C=O bond hydrogenations
- Improved synthesis of CAP
- Anticancer activity in vitro of Ru-CAP complexes
- Ru-CAP complexes active in catalytic TH reactions using HCOONa

Future perspectives of CAP project

- To explore the coordination properties of CAP to other TMss
- To study the capability of CAP to bind by both P and N donors to different metals and assess the structural properties of the materials obtained
- To test the obtained complexes in other catalytic reactions
- Use of CAP to bind Ag(I) and test the compounds as antimicrobial agents
Acknowledgments

Dr. Luca Gonsalvi
Dr. Gianna Reginato
Dr. Werner Oberhauser
Dr. Mikael Erlandsson
Dr. Pierluigi Barbaro
Dr. Francesca Liguori
Dr. Maurizio Peruzzini

INTERNATIONAL COLLABORATIONS

Prof. P. J. Dyson
Dr. T. Riedel
Prof. G. Laurenczy
Prof. Donald A. Krogstad
Prof. Frédéric Hapiot
Prof. Eric Monflier

FINANCIAL SUPPORTS