A sensitizer for energy and fuel production

Alessio Dessì

Light-to-Energy and Fuel (LEaF) Lab @CNR-ICCOM
Our Research in “Chemistry and Energy”

DSSCs
- Design and synthesis of new dyes
- Building-Integrated Photovoltaics
- Fiber-shaped Solar Cells

LSCs
- Design and synthesis of new visible light-emitters

H₂
- New photocatalysts for H₂ production
- Sustainable electron donors
- Alternative TiO₂ polymorphs

PSCs
- Design and synthesis of new hole-transport materials (HTMs)
D-π-A Structure

In THF solution

![Graph showing absorption spectrum in THF solution]

On TiO$_2$

![Graph showing absorption spectrum on TiO$_2$]

<table>
<thead>
<tr>
<th>$\lambda_{abs.}$ [nm]</th>
<th>$\varepsilon \times 10^4$ [M$^{-1}$ cm$^{-1}$]</th>
<th>$\lambda_{abs.}$ on TiO$_2$ [nm]</th>
<th>E_{0-0} [eV]</th>
<th>E_{ox} [V]a</th>
<th>E_{ox}^{-} [V]a</th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>9.41</td>
<td>487</td>
<td>2.24</td>
<td>0.99</td>
<td>-1.25</td>
</tr>
</tbody>
</table>

a vs. NHE
Dye-Sensitized Solar Cells (DSSCs)
Dye-Sensitized Solar Cells (DSSCs) – Transparent thin-film devices

Simple fabrication: NO TiCl₄ treatment, NO scattering layer, I⁻/I₃⁻ redox couple;

- Best result $\eta = 7.71\%$ for TTZ5, better than reference dyes D5 and Z907
- Thin TiO₂ films: thickness 5.5 μm / Surface area: 0.25 cm²

![J-V curves](image)

J_{sc} = short-circuit photocurrent density
V_{oc} = open-circuit photovoltage
ff = fill factor
η = solar energy-to-electricity conversion yield
P_{in} = power of incident sunlight (generally 100 mW cm⁻²)

$$\eta(\%) = \frac{P_{max.}}{P_{in.}} = \frac{(J_{sc.} * V_{oc.} * ff)}{P_{in.}}$$

Prof. Aldo Di Carlo and Dr. Daniele Colonna, Center for Hybrid and Organic Solar Energy (C.H.O.S.E.)

Dye-Sensitized Solar Cells (DSSCs) — Transparent thin-film devices

Simple fabrication: NO TiCl₄ treatment, NO scattering layer, I⁻/I₃⁻ redox couple;

- Transparent TiO₂ films: thickness 3.0 μm / Surface area: 3.6 cm²
- Commercial high stability electrolyte (Dyesol HPE)

\[\text{TTZ5} \]

![J-V curves](image)

![Stability measurements](image)

Prof. Aldo Di Carlo and Dr. Daniele Colonna, Center for Hybrid and Organic Solar Energy (C.H.O.S.E.)

Dye-Sensitized Solar Cells (DSSCs) – Transparent thin-film devices

Active area (cm²) | J_{sc} (mA cm⁻²) | V_{oc} (V) | ff (%) | η (%)

| TTZ5 module | 226 | 12.4 | 8.72 | 54.0 | 4.86 |
| D35cpdt module* | 226 | 10.2 | 9.06 | 58.2 | 4.46 |

* Dyenamo Red; https://dyenamo.se/dyenamo_dyes.php

Prof. Aldo Di Carlo and Dr. Luigi Vesce, Center for Hybrid and Organic Solar Energy (C.H.O.S.E.)
Dye-Sensitized Solar Cells (DSSCs) – Fiber-Shaped Solar Cells

Fiber-Shaped Solar Cell in “2 wires configuration”.

High mechanical stability. Suitable for wearable application.

Microscope images of TiO$_2$ coating under mechanical stress at different angle.

Solar Energy Materials and Solar Cells, 2020, 204, 110209

Dr. Alessandra Sanson and Dr. Nicola Sangiorgi, CNR-ISTEC
Dye-Sensitized Solar Cells (DSSCs) – Fiber-Shaped Solar Cells

Standard Irradiation Conditions (SIC) ▼

Diffuse Reflection Irradiation Conditions (DRIC) ▼

η_{max} ≈ 1%
An **organic semiconductor** with a smaller band-gap than TiO₂
- To collect visible light
- To have an easier charge separation

A **sacrificial electron donor (SED)**, ideally derived from renewable feedstock, to reduce the dye
Photocatalytic experiment

- Dye loading: 10 μmol g⁻¹
- 150 W Xe lamp with a cut-off filter at 420 nm
- Time: 20 hours

\[
\text{TON} = \frac{2 \times \text{H}_2 \text{total amount}}{\text{dye loading}}
\]

<table>
<thead>
<tr>
<th>SED: TEOA</th>
<th>SED: EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ amount [μmol g⁻¹]</td>
<td>TON</td>
</tr>
<tr>
<td>AD418</td>
<td>4359</td>
</tr>
<tr>
<td>TTZ5</td>
<td>3432</td>
</tr>
</tbody>
</table>

Prof. Paolo Fornasiero and Dr. Matteo Monai, University of Trieste

ChemSusChem, 2018, 11, 793
Acknowledgments

LEaF Lab @CNR-ICCOM

Dr. Gianna Reginato
Dr. Lorenzo Zani
Dr. Alessandro Mordini
Dr. Massimo Calamante
Dr. Samuele Staderini
Matteo Bartolini
Costanza Papucci
Rossella Infantino

and former members…

Dr. Ottavia Bettucci
Dr. Matteo Bessi
Dr. Daniele Franchi

CNR-ISTEC (Fiber-DSSCs)
Dr. A. Sanson – Dr. N. Sangiorgi

University of Trieste (H₂ production)
Prof. P. Fornasiero – Dr. M. Monai – Dr. T. Skaltsas

University of Siena (Computational Chemistry)
Prof. A. Sinicropi – Dr. M. L. Parisi

C.H.O.S.E. Tor Vergata (DSSCs and PSCs)
Prof. A. Di Carlo – Dr. D. Colonna – Dr. L. Vesce – A. Castriotta

CREA Pescia (Greenhouse)
Dr. D. Massa – Dr. S. Cacini

Regione Toscana

LEaF Lab - @LEaFLabCNR
LEaF Lab - @LabLeaf