Computational Modeling of Perovskite Solar Cells

Edoardo Mosconi

Computational Laboratory for Hybrid/Organic Photovoltaics - www.clhyo.org CNR- ISTM Perugia, Italy

Outline

- Introduction
- Computational Approach
- Interfaces in PSC
- Mobile Ions in PSC

Perovskite Solar Cells Efficiency

Perovskite solar cells: Organohalide lead perovskites

J. Am. Chem. Soc. 2009, 131, 6050

L. Etgar et al. J. Am. Chem. Soc. 2012, 134, 17396; H. Zhou et al. Science, 2014, 354, 543.

Tetragonal MAPbI₃: I4cm

Band-gap 0.6 eV

Perovskites Electronic Structure

Band Gap (eV)

Band Gap (eV)

а

SR-

b)

OPEN

SCIENTIFIC

REPORTS

SUBJECT AREAS: SOLAR CELLS MATERIALS SCIENCE

Relativistic GW calculations on CH₃NH₃PbI₃ and CH₃NH₃SnI₃ Perovskites for Solar Cell Applications

Paolo Umari^{1,2}, Edoardo Mosconi³ & Filippo De Angelis³

Received 22 November 2013 Accepted 25 February 2014 Published

26 March 2014

Correspondence and requests for materials should be addressed to F.D.A. (filippo@thch. unipg.it) ¹Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy, ²CNR-IOM DEMOCRITOS, Theory@Elettra Group, c/o Sincratrone Trieste, Area Science Park, Basovizza, I-34012 Trieste, Italy, ³Camputational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), CNR-ISTM, Via Elce di Sotto 8, I-06123, Perugia, Italy. iect

ugh.

e

Hybrid AMX₃ perovskites (A = Cs, CH₃NH₃; M = Sn, Pb; X = halide) have revolutionized the scenario of emerging photovoltaic technologies, with very recent results demonstrating 15% efficient solar cells. The CH₃NH₃PbI₃/MAPb(I_{1-x}Cl_x)₃ perovskites have dominated the field, while the similar CH₃NH₃SnI₃ has not been exploited for photovoltaic applications. Replacement of Pb by Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Density Functional Theory electronic structure methods have so far delivered an unbalanced description of Pb- and Sn-based perovskites. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH₃NH₃SnI₃ and CH₃NH₃PbI₃, opening the way to new materials design. The different CH₃NH₃SnI₃ and CH₃NH₃PbI₃ electronic properties are discussed in light of their exploitation for solar cells, and found to be dominantly due to relativistic effects. These effects stabilize the CH₃NH₃PbI₃ material towards oxidation, by inducing a deeper valence band edge. Relativistic effects, however, also increase the material band-gap compared to CH₃NH₃SnI₃, due to the valence band energy downshift (~0.7 eV) being only partly compensated by the conduction band downshift (~0.2 eV).

Perovskite/TiO₂ interface: Structural features

Vittoria Roiati,^{†,‡,#} Edoardo Mosconi,[§] Andrea Listorti,^{*,†,||} Silvia Colella,^{||} Giuseppe Gigli,^{†,||,⊥} and Filippo De Angelis^{*,§}

V. Roiati, E. Mosconi, et al. Nano Lett. 2014, 14, 2168.

TiO₂/perovskites interfaces: Role of Cl doping

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

Michael M. Lee,¹ Joël Teuscher,¹ Tsutomu Miyasaka,² Takurou N. Murakami,^{2,3} Henry J. Snaith¹*

XRD -> 0.7% volume contraction

S. Colella, E. Mosconi, et al. Chem. Mater. 2013, 25, 4613.

E. Mosconi, et al. J. Phys. Chem. Lett. 2014, 5, 2619.

E. Mosconi, et al. J. Phys. Chem. Lett. 2014, 5, 2619.

Chloride effect: Charge separation

A molecularly engineered hole-transporting material for efficient perovskite solar cells

Michael Saliba¹, Simonetta Orlandi², Taisuke Matsui³, Sadig Aghazada¹, Marco Cavazzini², Juan-Pablo Correa-Baena⁴, Peng Gao¹, Rosario Scopelliti¹, Edoardo Mosconi⁵, Klaus-Hermann Dahmen⁶, Filippo De Angelis⁵, Antonio Abate⁷, Anders Hagfeldt⁴, Gianluca Pozzi², Michael Graetzel⁷ and Mohammad Khaja Nazeeruddin^{1*}

Ion (Defects) Migration in MAPbI₃: Activation energies

<u>Unwanted phenomena:</u> Slow photo conductivity response Hysteresis

Ions migration

	$E_{a}(eV)$			
Defect	Azpiroz - CNR	Haruyama	Eames	Meloni
I Vacancy	0.08	0.33	0.58	0.13
MA Vacancy	0.46	0.55	0.84	0.60
Pb Vacancy	1.06	-	2.31	1.39
I Interstitial	0.08	-	-	-

Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energy Environ. Sci. 2015, 8, 2118.

Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y. J. Am. Chem. Soc. 2015, 137, 10048.

Eames, C.; Frost, J. M.; Barnes, P. R. F.; O'Regan, B. C.; Walsh, A.; Islam, M. S. Nat Commun 2015, 6, 7497

Meloni, S.; Moehl, T.; Tress,...Rothlisberger, U.; Graetzel, M. Nat Commun 2016, 7, 10334.

I⁻ Vacancy Migration: Car-Parrinello MD

I⁻ Vacancy Migration: Car-Parrinello MD

MA assists defect migration by reorienting its charge distribution along with the ionic motion, providing a local charge screening mechanism which may further speed up the ionic migration

Energy & Environmental Science

Light-induced annihilation of Frenkel defects in organo-lead halide perovskites†

Edoardo Mosconi,^{ab} Daniele Meggiolaro,^b Henry J. Snaith,^c Samuel D. Stranks*^{de} and Filippo De Angelis*^{ab}

Mosconi, E.; Meggiolaro, D.; Snaith, H. J.; Stranks, S. D.; De Angelis, F. *Energy Environ. Sci.* **2016**, DOI: 10.1039/C6EE01504B D. W. deQuilettes et al. *Nat Comms*, 2016, DOI: 10.1038/ncomms11683

Light-induced Annihilation of Frenkel Defects in Organo-Lead Halide Perovskites

Mosconi, E.; Meggiolaro, D.; Snaith, H. J.; Stranks, S. D.; De Angelis, F. Energy Environ. Sci. 2016, DOI: 10.1039/C6EE01504B

Conclusions and Remarks

• Electronic and Optical properties of MAPbI₃

GW-SOC, HSE06-SOC, PBE0-SOC

- Role of Cl doping
- Role of MA⁺ in determining the migration meachanism
- Light-induced Annihilation of Frenkel Defects

Computational Laboratory for Hybrid/Organic Photovoltaics

Collaborations

CNR-IMM
(Alberti, Pellegrino)
CNR-IMEM (Mosca)
CNR-NANO
(Colella, Listorti, Gigli)
CNR-ISMN (Ruani)
IIT (Petrozza)
LPI-EPFL
(Nazeeruddin, Graetzel)
UOXF (Snaith)

Funds

FP7-NMP-2013-**MESO** H2020-LCE-2017-RES-RIA-**ESPResSo** LCE-07-2016-2017-**PERTPV**