

From PTA to novel CAP: application of water soluble phosphines in catalysis and medicinal chemistry

Antonella Guerriero

Consiglio Nazionale delle Ricerche (CNR) Istituto di Chimica dei Composti Organometallici (ICCOM) Sesto Fiorentino (Florence), Italy

Conferenza di Dipartimento 2018

Water: green solvent for homogeneous and biphasic catalytic processes

A > environmentally benign (not volatile and not toxic)

- replacement of organic solvents and their disposal
- $\Gamma^{N} \succ$ reduction of risks (not flammable)

Separation of organic products from catalysts (recovery and recycling)

🖞 ≽ low cost, abundant

PTA: the long story of a versatile water soluble phosphine

4. "Hard metal " coordination: grafting, heterogenisation, polymerization

PTA: 1,3,5-triaza-7-phosphadamantane

- Neutral phosphine synthesized in 80-90% yield
- Thermally stable (dec. Temp. >260°C)
- Solid stable to air and moisture
- Soluble in water (S = ca. 235 g/L)
- Small cone angle (103°)

Phillips, A. D. et al., *Coord Chem Rev* (**2004**) *248*, 955 Bravo, J. et al., *Coord Chem Rev* (**2010**) *254*, 555 Guerriero, A. et al., *Coord Chem Rev* (**2018**) *355*, 328 DSCTM Young Investigator Award 2018

PTA upper rim functionalisation

GENERAL SYNTHETIC ROUTE

Synthesis of Ir(I) and Ru(II) Complexes

 Solubility in water @ 20 °C (g/L)

 PZA= 1050
 PZA-NMe₂= 1.8

 PTA-CH(1MeIm)OH= 320
 PTA-C(1MeIm)₂OH= 78

Guerriero A., Erlandsson, M., et al. *Organometallics* (**2011**) *30*, 1874 Krogstad, D.A.; Guerriero, A., et al. *Organometallics* (**2011**) *30*, 6292

Ir(I) and Ru(II) Complexes for Transfer Hydrogenation Reactions

Lower rim functionalisation

- Easily synthesised
- Design of steric and electronic properties
- Tunable water solubility

(N-tert-butyl-Bz-PTA)Br

Young Investigator Award 2018

Long-chain alkene biphasic HF with cyclodextrins (CDs) as mass transfer promoters

Legrand, F.-X., Guerriero, A., et al. Appl. Cat. A: Gen. (2009) 362, 62

Rh-catalysed hydroformylation of long chain olefins in biphasic media

• basicity > [N-Bz-PTA]Cl (¹J_{P-Se}= 815 Hz)

• S(H₂O)_{20°C}= 10 g/L

• interaction between *tert*-butyl group and RAME- β -CD

Hydrophobic part included in CD cavity

Low surface activity and adsorption ability at the interface

*Low conversion T= 80 °C (K*_{ass}= 5447 M⁻¹)

Ligand not included and substrate included in CD cavity

High surface activity and increase of catalytic activity at the interface

High conversion T > 80 °C (K_{ass} decreases)

after reaction

Ligand included in CD cavity

No emulsions and rapid separation through decantation

Good phase separation T< 80 °C (K_{ass} = 5447 M⁻¹)

CD-based thermocontrolled catalytic process

Olefin	CD	T (°C)	Conv.(%) ^b	Sel. (%) ^c	l/b ^d
1-decene	-	80	26	99	2.1
1-decene	RAME- β -CD	80	10	97	1.8
1-decene	-	100	56	99	1.7
1-decene	RAME-β-CD	100	72	99	2.0
1-decene	RAME-β-CD	120	98	99	1.8
1-dodecene	RAME- β -CD	80	11	99	1.7
1-dodecene	RAME-β-CD	100	75	99	1.7
1-tetradecene	RAME- β -CD	80	14	95	1.6
1-tetradecene	RAME-β-CD	100	88	97	1.9

^a Experimental conditions: Rh(acac)(CO)₂ (4.07 × 10⁻² mmol), water-soluble ligand (0.21 mmol), CD (0.48 mmol), H₂O (11.5 mL), 1-alkene (20.35 mmol), 1500 rpm, CO/H₂ (1/1): 50 bar, 6 h. ^b Calculated with respect to the starting olefin. ^c (mol. of aldehydes)/(mol of converted olefins) × 100. The side products were mainly isomeric olefins. ^d Ratio of linear to branched aldehyde product.

Six, N.; Guerriero, A., et al. Catal. Sci. Technol. (2011) 1, 1347

Immobilization of Ir-PTA complex on DOWEX resins

Guerriero, A,; Liguori, F. et al. Green Chem. (2012), 14, 3211

Young Investigator Award 2018

C=N and C=O hydrogenation with Ir-DowexH⁺ resin

Substrate	Product	Phase	Yield (%) [time h]	TOF (h⁻¹)	Leaching (ppm) ⁱ
2-methylquinoxaline	2-methyl-1,2,3,4-tetrahydroquinoline	Hetero ^b Homo ^b	92.2 [22] 91.1 [16]	6 9	0.2 —
5-methylquinoxaline	5-methyl-1,2,3,4-tetrahydroquinoline	Hetero ^c Homo ^c	89.2 [22] 32.0 [17]	6 3	0.32
2,6-dimethylquinoline	2,6-dimethyl-1,2,3,4-tetrahydroquinoline	Hetero ^d Homo ^d	26.0 [29] 3.5 [29]	1 1	0.08 —
3,4-dihydroisoquinoline	NH 1,2,3,4-tetrahydroisoquinoline	Hetero ^e Homo ^e Hetero ^g	99.9 [1] 11.0 [1] 89.7 [2]	300 34 374	7.6 - 4.0
MeO Harmaline	MeO Leptaflorine	Hetero ^f Homo ^f	99.1 [24] 9.3 [22]	4 5	8.5 —
4,4'-dimethylfuran-2,3- dione	OH O Pantolactone	Hetero ^h Homo ^h	89.0 [4] 99.9 [4]	22 25	0.37

RESULTS

100% selectivity to desired products n all cases

 heterogenized catalyst more active than the homogeneous ones

• no catalytic activity shown by the solution recovered after catalysis (minor metal leaching)

easy and quantitative recovery of the resin by decantation

 Pharmaceutically relevant molecules: antidepressants, antitumoral, antibiotics etc.

^a Experimental batch conditions: **P = 20 bar H₂, T = 80 °C**; ^b H₂O, S/C = 150; ^c H₂O, S/C = 150; ^d **50 bar H₂**, H₂O: MeOH = 4:1, S/C = 50; ^e H₂O, S/C = 305; ^f H₂O: MeOH = 1.5:1, S/C = 100; ^g H₂O, S/C = 100; ⁱ determined by ICP-OES.

New ligand CAP: the higher homologue of PTA

Nine-membered macrocycle

- Stable to air and moisture as solid and in solution
- Soluble in water (S = ca. 2 g/100 mL)
- Thermal stability comparable with that of PTA
- Small cone angle (109°)
- Soluble in MeOH, EtOH, ⁱPrOH, CH₃CN
- Highly soluble in CHCl₃, CH₂Cl₂ (S = ca. 10 g/100 mL)

CAP: 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane

THP = tris-(hydroxymethyl)phosphine TACN = 1,4,7-triazacyclononane

MeOH best solvent choice
 No reaction in THF or acetone
 Formation of amorphous byproducts

Figure 1. Dodecahedral crystals of free ligand CAP (adapted from original ref.)

CAP cage architecture: a stereochemically intermediate between PTA and Verkade's ligand

Young Investigator Award 2018

Different reactivity between CAP and PTA

Young Investigator Award 2018

Improvement of CAP synthesis

Two steps reaction in aqueous solution

THPC= *tetrakis*-(hydroxymethyl)phosphonium chloride THP = tris-(hydroxymethyl)phosphine TACN = 1,4,7-triazacyclononane

Synthesis of Ru(II) CAP complexes

Guerriero, A., et al. Inorg. Chem. (2017) 56, 5514

CAP

ΡΤΑ

2

3

4

Solid-state characterisation of Ru(II) compounds

CRYSTALS GROWN FROM EtOH/CH₂Cl₂

- CAP with same [333] conformation of free ligand
 Same PN and NN distances as in free ligand
- Ru-P bond length longer than RAPTA-C
- Ru-C bond lengths longer than RAPTA-C

RACAP-C. Selected bond distances (Å) and angles (deg): Ru-Cl1=2.4184(5), Ru-Cl2=2.4205(5); Ru-P=2.3180(5); Ru-centroid(C1-C6)=1.709; Cl1-Ru-Cl2=87.601(19); Cl1-Ru-P=86.937 (19); Cl2-Ru-P=83.775(18)

Same CAP conformation of 2
 Ru-P and Ru-C bond lengths longer than in 2 (less strong Ru-p-cymene interaction)
 Ru-Cl bond lengths shorter than in 2

Compound 3 2MeOH/H₂O. Selected bond distances (Å) and angles (deg): Ru-Cl=2.4026(7); Ru-P1=2.3254(7); Ru-P2=2.3353(7); Ru-centroid(C1-C6)=1.768; Cl-Ru-P1=83.59(2); Cl-Ru-P2=87.90(3); P1-Ru-P2=93.37(3)

Stability tests of new Ru(II) complexes

Ru(II)-CAP complexes: in vitro antitumor tests

Cutotoxicity tosts (IC

- Only minor cytotoxicity effects of CAP
- Similar IC₅₀ values of **2**-**4** due to the same species in solution
- Equal cytotoxicity of **4** toward A2780 and A2780cisR
- High cell selectivity of 2-4 against A2780 compared to HEK293
- Higher cytotoxicity of 2-4 compared to RAPTA-C

Cytotoxicity tests (E_{50} , μ wi, 72 h) of ear and its complexes.					
	A2780	A2780cisR	HEK293		
САР	>200	>200	>200		
2	55.3 ± 18.6	108 ± 10	102 ± 26		
3	48.1 ± 2.2	99.2 ± 15.9	80.7 ± 12.4		
4	65.2 ± 18.0	70.6 ± 3.1	163 ± 46		
RAPTA-C	230	270	>1000		

(M 72 h) of CAP and its complexes

Cytotoxicity determined by the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) cell viability assay. For each testing, compounds were freshly prepared as a DMSO solution of 0.5% v/v. A 100 μ L portion of drug solution was added to each well and the plates were incubated at 37°C for 72 h.

A2780 = human ovarian carcinoma cellsA2780cisR = cells resistant to cisplatinHEK293 = noncancerous human embryonic kidney cells

Guerriero, A., et al. Inorg. Chem. (2017) 56, 5514

Ru(II)-CAP complexes: catalytic transfer hydrogenation of BZA

Catalytic transfer hydrogenation of BZA with compounds 2 – 4

Entry	Catalyst	T (°C)	% conv.	time (h)	yield A (%) ^b	yield B (%) ^b	yield C (%) ^b
1	2	60	60.0	24	45.3	13.0	1.7
2 ^c	2	60	18.7	24	14.2	4.4	0.1
3	2	80	99.4	4	82.0	5.2	12.2
4 ^c	2	80	76.3	4	61.7	12.8	1.8
5	4	80	82.6	4	68.9	11.5	2.2
6 ^c	4	80	51.9	4	40.4	10.8	0.7
7	3	80	71.8	24	52.3	15.8	3.7
			96.0	48	68.7	13.5	13.8
8 ^c	3	80	66.5	24	46.6	17.8	2.1
			92.5	48	73.5	13.0	6.0
9	RAPTA-C	80	99.5	24	93.2	3.2	3.1
10 ^c	RAPTA-C	80	30.0	24	23.8	6.0	0.2

^aGeneral conditions: catalyst, 9.8 x 10^{-3} mmol; BZA, 0.98 mmol; HCOONa, 9.8 mmol; **MeOH:H₂O (1:/1)**, 6 mL; catalyst/substrate/HCOONa= 1:100:1000. ^b GC values based on pure samples: A = 4-phenyl-2-butanone; B = 4-phenyl-3-buten-2-ol; C = 4-phenyl-2-butanol. ^c Hg(0) added (one drop).

Ru(II)-CAP complex: transfer hydrogenation of cyclic imines

Catalytic transfer hydrogenation of cyclic imines with complex **3**. solvent **Substrate Product^b yield**^c time (h) Entry l°C 80 39.9 H_2O 24 3,4-dihydroisoquinoline 1,2,3,4-tetrahydroisoquinoline $MeOH/H_2O$ 60 10.9 24 1:1 24 74.1 $MeOH/H_2O$ 80 92.5 48 1:1 MeOH/H₂O 80 0.4 24 1:1 2-methylquinoxaline 2-methyl-1,2,3,4-tetrahydroquinoxaline $MeOH/H_2O$ 80 48 1:1 5-methylquinoxaline 5-methyl-1,2,3,4-tetrahydroquinoxaline MeOH/H₂O 1.5 24 80 1:1 3.0 48 quinoline 1,2,3,4-tetrahydroquinoline

^aGeneral conditions: catalyst, 1.0 x 10⁻² mmol; substrate, 1.0 mmol; HCOONa, 10.0 mmol; **MeOH:H₂O (1:/1)**, 6 mL.; catalyst/substrate/HCOONa= 1:100:1000. ^b Products confirmed by GC and GC-MS analyses. ^c GC values based on pure samples.

Guerriero, A., et al. Catalysts (2018) 8, 88

Investigation of catalytically active species

Young Investigator Award 2018

 CD_2Cl_2) showing the change from triplet to singlet for the Ru-H signal in **4**.

Summary of results

- Synthesis of a library of PTA upper-rim and lower-rim modified ligands
- Homogeneous Ru and Ir catalyzed C=O and C=C bond hydrogenations
- Biphasic Rh-catalyzed olefin hydroformylation with CDs
- Heterogeneous Ir-catalyzed C=N and C=O bond hydrogenations

- Improved synthesis of CAP
- Anticancer activity in vitro of Ru-CAP complexes
- Ru-CAP complexes active in catalytic TH reactions using HCOONa

Future perspectives of CAP project

- To explore the coordination properties of CAP to other TMs
- To study the capability of CAP to bind by both P and N donors to different metals and assess the structural properties of the materials obtained
- To test the obtained complexes in other catalytic reactions
- Use of CAP to bind Ag(I) and test the compounds as antimicrobial agents

Acknowledgments

Dr. Luca Gonsalvi Dr. Gianna Reginato Dr. Werner Oberhauser 6 Dr. Mikael Erlandsson ISTITUTO DI CHIMICA DEI COMPOST Dr. Pierluigi Barbaro Dr. Francesca Liguori

Dr. Maurizio Peruzzini

INTERNATIONAL COLLABORATIONS

Prof. P. J. Dyson Dr. T. Riedel Prof. G. Laurenczy

Prof. Donald A. Krogstad

ONCORDIA COLLEGE

Prof. Frédéric Hapiot Prof. Eric Monflier

FINANCIAL SUPPORTS

 \oplus IIII

ORGANOMETALLICI

Young Investigator Award 2018