Defects Activity in Lead Halide Perovskites: a Computational Perspective

Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO) CNR-ISTM, Perugia, Italy.

Daniele Meggiolaro

CompuNet, Istituto Italiano di Tecnologia, Genova, Italy.

CNR-DSCTM YIA 2019 Perugia 20/09/2019

CNR-ISTM

• **Defects modelling** in Lead-Halide Perovskites (ACS Energy Lett. 2018, 3, 2206-2222)

• Defects chemistry and Defects Tolerance of Lead-Halide Perovskites (Energy Environ. Sci. 2018, 11, 702-713)

• Role of surfaces and defects reactivity (ACS Energy Lett. 2019, 4, 779-785)

Introduction – Perovskites Solar Cells

- Structure ABX₃
 - A = organic/inorganic cation
 - B = metal (Pb)
 - X = halide (I, Br, Cl)
- Direct band-gap semiconductor (1.2 to 1.6 eV)
- Low cost manufacturing (solution chemistry)
- Thin films technology (high defects densities)

High efficiencies (24%)

- Long-lived carriers
- High defects tolerance

substitutional impurity

vacancy interstitial impurity

Defects and Charge Traps in Perovskites

- Native defects play a prominent role in PL properties of HOIP (*Shockley et al. Phys. Rev.* **1952**, *87*, *835-842*)
- Defects tolerance: PL properties not strongly affected even in polycrystalline HOIP (~ 10¹⁶ cm⁻³) (*Leijtens et al. Energy Environ. Sci.* 2016, 9, 3472-3481)

Defects activity both in the bulk and on the surface of LHP

Charge Traps: loss of efficiency

First-principles DFT modelling

Defects - Essentials

Native defects: natural products of crystal growth (entropy gain) **Different states of charge** $\Delta G_{def} = \Delta H_{def} - T\Delta S_{def} \qquad \Delta H_{def} > 0$ $\Delta S_{def} > 0$ 2.0I_i in MAPbI₃ 1.5 **Defects stability: Defects formation energies (DFE)** (0/-) (+/0)DFE (eV) $DFE(X^{q}) = E(X^{q}) - E(bulk) - \sum_{i} n_{i}\mu_{i} + q(E_{F} + VBM + \Delta V) + E^{q}$ I_i^0 0.5 (+/-) 0.0Thermodynamics ionization levels (TIL) **I**;-٠ -0.5 I-rich 0.5 1.5 $\varepsilon(q/q') = \frac{DFE(D^{q}, E_{F}=0) - DFE(D^{q'}, E_{F}=0)}{\alpha' - \alpha}$ $E_{F}(eV)$ **Deep ionization levels: charge trapping Different conditions of growth** ۲

Defects – Band gap problem

$$DFE(X_q) = E^{def}(X_q) - E^{prist} + \sum_i n_i \mu_i + q(E_F + E_{VB} + \Delta V) + E^q$$

MAPbl₃ - Thermodynamic ionization levels

Meggiolaro et al. ACS Energy Lett. 2018, 3, 2206

• **Defects modelling** in Lead-Halide Perovskites (ACS Energy Lett. 2018, 3, 2206-2222)

• Defects chemistry and Defects Tolerance of Lead-Halide Perovskites (Energy Environ. Sci. 2018, 11, 702-713)

• Role of surfaces and defects reactivity (ACS Energy Lett. 2017, 2794-2798)

Trapping properties - Thermodynamic ionization levels

- I_i and V_{Pb} are deep traps. They can trap both electrons or holes depending on their oxidation states
- I_i and V_{Pb} are associated to undercoordinated iodines (I-rich environment)
- Iodine chemistry dominates the charge trapping activity in MAPbl₃
 - Iodine chemistry Charge Traps -0.5

Lead chemistry Shallow levels

- **V**_I and Pb_i show shallow levels.
- Inert in charge trapping processes
- V₁ and Pb_i are associated to undercoordinated Pb (Pb-rich environment)
 - MA defects do not couple with band edges (shallow)

Iodine Chemistry determines the charge traps activity in LHP

Meggiolaro et al. Energy Environ. Sci. 2018, 11, 702-713

Metastable and emissive traps in MAPI

Theory

- Long-lived electrons traps (μs), non-radiative decay: I_i⁺
 - Short-lived holes traps, radiative decay: I_i⁻

MAPbl₃ - Experiments

Meggiolaro et al. Energy Environ. Sci. 2018, 11, 702-713

• **Defects modelling** in Lead-Halide Perovskites (ACS Energy Lett. 2018, 3, 2206-2222)

• Defects chemistry and Defects Tolerance of Lead-Halide Perovskites (Energy Environ. Sci. 2018, 11, 702-713)

• Role of surfaces and defects reactivity (ACS Energy Lett. 2017, 2794-2798)

Surface defects activity

- Defects are stabilized at surfaces
- Enhanced migration and trapping activity

Model: Dimensions of NCs and surface availability strongly affect DFEs and diffusion of defects

 $DFE_{av} = (d_{surf} 6L^2 DFE_{surf} + d_{bulk} L^3 DFE_{bulk}) / (d_{surf} 6L^2 + d_{bulk} L^3)$

Passivation of surface sites limits defects formation and migration

 $\sigma = T^m e^2 D_0 / kT \exp(-\Delta H^{\neq} / kT) \exp(-DFE/kT)$

Meggiolaro et al. ACS Energy Lett. 2019, 4, 779-785

Photostability of LHP

Photostability and PCEs of LHP are influenced by temperature and light exposure

PLE

PLD

Light repetition rate

Temperature

Surface passivation to stabilize PVK thin films

Passivation of surfaces with oxygen-containing agents / polymers, such as PEO or TOPO

Theory

Experiments

40

Iodine interstitial DFE increase by 0.1 eV

Motti, S. G.; Meggiolaro, D. et al. *Nat. Photon.* **2019**, 13, 532-539

Thank you!